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FOCUSING EFFECTS IN TWO-DIMENSIONAL, SUPERSONIC FLOW

By R. E. MEYER
Department of Mathematics, University of Manchester
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Communicated by S. Goldstein, F.R.S.—Received 21 May 1949

The steady, supersonic, irrotational, isentropic, two-dimensional, shock-free flow of a perfect gas is
investigated by a new, geometrical, method based on the use of characteristic co-ordinates. Some of
the results apply also to more general problems of compressible flow involving two independent
variables (§ 1).

The method is applied in particular to the treatment of the non-linear, non-analytic features. The
variation in magnitude of discontinuities of the velocity gradient is determined as a function of the
Mach number in § 4. The reflexion at the sonic line of such discontinuities is treated in § 7. The
singularities of the field of flow are discussed in §§ 5 to 5-4; Craggs’s (1948) results are extended to the
case when the velocity components are not analytic functions of position, and to the case in which
both the hodograph transformation and the inverse transformation are singular. Examples are
given of singularities that occur in familiar flow problems, but have not hitherto been described
(88 5-3, 5-4). Some properties are established of the geometry in the large of Mach line patterns;
these properties are useful for the prediction of limit lines (§ 5-2).

The problem of the start of an oblique shockwave in the middle of the flow is briefly reviewed in
§6. |

In the appendix it is shown that the conventional method of characteristics for the numerical treat-
ment of two-dimensional, isentropic, irrotational, steady, supersonic flows must be modified near a
branch line if a loss of accuracy is to be avoided. :
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1. INTRODUCTION

Several authors have employed characteristic co-ordinates, which are natural systems of co-
ordinates for problems of supersonic flow. In the present investigation a consistent notation.
based on this idea is developed (§ 2). It provides a useful method for the qualitative discussion

) ¢

7~

<i ,

- of supersonic flow fields, and a supplementary tool for quantitative investigations by the
;5 — conventional method of characteristics.

@) E The method consists, effectively, in the formulation of the flow problem as one of Rieman-
= nian geometry, with a metric tensor, which is unknown «a priori and which has to be deter-
E 8 mined from the boundary conditions by the help of the focusing equations. A more elementary
— notation, however, has been adopted here. The physical concepts are translated into geo-

metrical concepts at the beginning, and it is found that the argument is greatly simplified
if it is carried on entirely in geometrical terms. Thus, the (non-linear) equations of motion
are replaced by the (linear) focusing equations (§ 3) for the length parameters introduced in
§ 2. The geometrical arguments, and results, may be translated back into physical language
at any stage, but a simple geometrical idea may correspond to a complicated physical
one. '
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154 R. E. MEYER ON THE FOCUSING EFFECTS IN

Considerable interest has been aroused in questions connected with the singularities of
supersonic flow fields. These fall into two classes. The singularities of the limit type are
singularities of the transformation from the hodograph plane (or the characteristic plane) to
the physical plane, i.e. singularities of the Mach line pattern in the physical plane; in many
cases they imply singularities of the velocity gradient. The other class are the singularities of
the inverse transformation, and these are called branch-type singularities. Both classes have
been investigated by Craggs (1948) under the assumption that the velocity components have
third-order derivatives with respect to the space co-ordinates, and vice versa. The arguments
employed in the present investigation do not involve such assumptions, and they are there-
fore used to study the properties of non-analytic solutions occurring in problems of the
hyperbolic type.

Except in § 6, it is assumed that the velocity components themselves are continuous. But
the velocity gradient may be discontinuous, and such a discontinuity is called a first-order
disturbance (see Meyer 19484). Again, the velocity gradient may be continuous, but de-
rivatives of some higher order of the velocity components may be discontinuous, in which
case we speak of a higher order disturbance. The variation in strength of disturbances along
characteristics is studied in § 4, and the reflexion of first-order disturbances at the sonic line
is discussed in § 7.

It is shown in §§ 5 to 5-2 that Craggs’s results concerning the singularities of supersonic
flows remain valid even when disturbances are present, provided they are not of the first
order. When first-order disturbances occur, however, the properties of limit lines are modi-
fied considerably (§§5-3, 5-4).

In Craggs (1948) the singularities are investigated by the help of the Jacobian of the hodo-
graph transformation. The arguments employed in the present paper do not involve the
Jacobian, and cover cases where both the hodograph transformation and the inverse trans-
formation are singular, including simple waves. Only types of singularities of which examples
have been reported are discussed in the present paper. More complex types of singularities
may, however, occur; examples could be constructed by the help of suitable boundary
conditions. ‘

It is commonly accepted that the occurrence of limit lines is connected with the formation
of shockwaves. § 6 contains a brief presentation of what is known so far about this problem.

The results concerning limit lines and the formation of shockwaves apply also to steady
supersonic, irrotational, isentropic, axially symmetrical flow, except in the neighbourhood of
the axis, since the proofs are based on arguments of differential geometry. Similarly, they
apply to steady, supersonic, axially symmetrical or two-dimensional flow with vorticity and
with entropy changes, provided the vorticity and the entropy gradient are bounded. Methods
similar to those employed here may also be applied to the study of one-dimensional, unsteady,
isentropic flow, and similar results have been obtained by P. M. Stocker (unpublished).
Again, the results concerning limit lines and the formation of shockwaves apply also to
unsteady flow with spherical symmetry (except near the centre of symmetry), as well as to
one-dimensional, unsteady flow with entropy changes (provided the rate of change of the
entropy is bounded), and to the unsteady flow in ducts the cross-section of which varies
slowly enough for the variation of the velocity over any cross-section to be negligible.
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TWO-DIMENSIONAL, SUPERSONIC FLOW 155

2. CHARACTERISTIC CO-ORDINATES

If u, 0, g, a, denote the Mach angle, the angle the velocity direction makes with the x-axis,
the velocity magnitude, and the critical sonic speed, respectively, then the characteristic
equations for the two-dimensional, steady, 1rrotat10nal 1sentrop1c, supersonic flow of a
perfect gas are (Meyer 19485):

dyldx = tan (0 —p); 0+t = a = const. on any ‘plus’ Mach line,* (1)
dy/dx = tan (0 +u); 0 —t = f = const. on any ‘minus’ Mach line, (2)
where t(u) :fq 90—;’5 dg, (3)
and ¢ and g are related by Bernoulli’s equation
1 sin?py  y+1
2 2
q (24—}’ l) y—las = const. (4)

Let the positive direction of a Mach line be defined as that making an acute angle with the
stream direction, and let 4,(a, §) dx and hy(«, £) df be the elements of length in the positive
directions of the minus and plus Mach lines, respectively, in the x, y-plane (the ‘physical’
plane). The curvatures of the plus and minus Mach lines may then be written

Kp = 0(0—p) hgdf = (1—N)/hg, (5)
ky=0(0+p)/h, 00 = (1—N
respectively, where N = }(1—du/dt) = L(y-+1)sec?u >1, (6)
by (4).
Moreover, let H, = (h,sin2u)"', Hy= (hysin2u)". (7)

Ficure 1

(If a Riemannian geometry is defined in the physical plane by the help of the ‘characteristic
co-ordinates’ &, #, then /2 is a covariant, and H? the corresponding contravariant, component
of the metric tensor. A geometrical interpretation of H,,is as follows. Let the positive direction
on the normals to the Mach lines be defined as that making an acute angle with the stream
direction (figure 1). Then H, is the derivative of  in the positive direction of the normal to the
plus Mach line, and the element of length in this direction equals (1/H,) da).

Note that the definition of the length parameters 4 and H, together with the assumption
that the velocity components are continuous functions of x and y, implies lemma 1.

* o and f represent the stream direction at the sonic end of the respective Mach lines. The function

P =1000—¢(x) has been tabulated (Herbert & Older 1946).

21-2
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156 R. E. MEYER ON THE FOCUSING EFFECTS IN

Lemma 1. h, and H, are continuous functions, where they are bounded, of § on either side of any plus
Mach line, and similarly for hy, Hy as functions of o and any minus Mach line.

A physical interpretation of these geometrical parameters of the Mach-line pattern is
obtained by noting that the components of the velocity gradient in the positive Mach
directions are

fo = dglh,da — gsin? u H, } "

Jp=0q/hg0f = —qsin®*pu Hy,

respectively, by (3), (1) and (7). The component of the velocity gradient in the stream direc-
tion is therefore

Js = gsecu(fo+fp) = sqtanpsinp (H,—Hp); (9)
the streamline curvature is (by (1), (2) and (7)),
ks = gsec u(d0/h,00+030[hyp) = §sinpu (H,+Hy), (10)

and the angle 7 between the streamline and the isobar at any point is given by
tany = —7/(gx,) = tanp (Hy— H,) [(H,+ H,). (11)

Note that (from (5)) %, and £, are proportional to the radii of curvature of the plus and
minus Mach lines, and (from (8)) H, and #, are proportional to the components of velocity
gradient along the tangents to these lines. ‘

3. THE FOCUSING EQUATIONS
The characteristic equations, (1) and (2), can be replaced by
0x[0f = hgcos (0—u), 0x[dx = h,cos (0+p),
0y|0f = hgsin (0 —u),  dy/de = h,sin (0+u).

By equating the mixed second derivatives of ¥ and y, making use of (1), (2) and (6), we obtain
the ‘focusing equations’,*

(12)

Ohg/do = N cosec 2u (hjcos 2u—h,), (13)
0h,|0f = N cosec 2u (hy—h,, cos 2u). (14)

The focusing equations are linear, with coefficients that are known functions of the
independent variables. They can be integrated, for example, by Massau’s method (Meyer
1948)); x and y are then found from (12) (or (15)). A special procedure, however, has to be
adopted near a branch line. On the other hand, certain difficulties are avoided which arise
with the conventional method, e.g. in the determination of the position of a limit line.

"The equations (12) can be inverted to give

0a/dx = —H, sin (0—p), da/dy = H,cos (0 —pu), }
0f|0x = Hysin (0+-p),  0f)dy = —Hjcos (0+p).

* A set of equations equivalent to (13) and (14) was established by Nikolsky & Taganoff (1946), without
notice of their wider implications. The equations were formally integrated, and so the function in equation (26)
below appeared in their paper.

(15)
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TWO-DIMENSIONAL, SUPERSONIC FLOW 157
By equating the mixed, second derivatives of @ and /4, we find that
0H, 0H, . _0H, B
. COs (0—p)+ oy sin (0 —p) = T~ —H,(NH,+(N—1) Hjcos 2u), (16)
fﬂ/}’_:[] (NH;+ (N—1) H, cos 2u) (17)
hyda AV “ '

o

3-1. The two systems of equations (13), (14) and (16), (17) are equivalent when £, A, H,
and Hj are all bounded. The equations (12) hold when %, and %, are bounded, and the
equations (15) when H, and Hj are bounded. Hence, provided %, and Hj are non-zero and

bounded,
dh,Jhgdf = N(cosec 2u—h, Hycos 2u), (18)

0H, /30 — Hy(NHph,+(N—1) cot24), (19)

FIGURE 2

for these equations can be deduced (by (7) and (6)) from (13) and (14), as well as from (16)
and (17). To prove that (18) holds even where %, = Hj = 0, we need to show that

O, /hy3p — Nsin 24,

where Hj = 0, by an argument that is not affected if , vanishes as well; a similar argument
may serve in the case of equation (19).

Let P be a point where H; = 0, and take as second characteristic parameter the length s
measured from P along the plus Mach line through P, with s increasing in the positive
direction (figure 2). Leta’ = a—a(P). If we denote by 7(s,) the distance, measured along the
minus Mach line on which s = s, between the points where ¢’ = 0 and &’ = «,, then at P,

OhJhy0f = Tim Tim 60/ =7(0)
a/ A ﬁ si=0 0:1)1;1’; So%o
Now the angle of inclination of a minus Mach line is (0+x), and 9(0+u)/d0’ = (1—N),
which is bounded.* To the first order, 7(s,) may therefore be replaced by the length of the

* We assume strictly supersonic conditions (# <4w) throughout §§ 3 to 6.
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158 R. E. MEYER ON THE FOCUSING EFFECTS IN

chord of the minus Mach line or, alternatively, by cosec 2x times the normal distance, n(s,),
between the two plus Mach lines. Moreover, at P, since H, = 0, du/ds = 0 by (1), (2) and (7),
and

_ lim lim M0 =7(0)
oy = i i "L
The curvature of the plus Mach line vanishes at P, by (6) and (7), and by Lemma 1 it is a
continuous function of & for fixed s,. Hence

n(sy) =n(0) = sytan Ae+-...= sy Ae+-...,

where Ae is the angle between the tangents of the plus Mach lines ¢’ = 0 and &’ = o at their
respective points of intersection with the minus Mach line s = 0. By (6), Ae = Nay+..., and
hence

Ohafhg 0 = N/sin 2u
at P. (It may be noted that our proof applies also to the case where H, » vanishes identically in
a region of the physical plane—so that all plus Mach lines are straight in that region—i.e. to

the case of a simple wave.)
Similarly,

Ohglh,du = N(hg H, cos 2u— cosec 2u), (20)
; 0H,[0f = —H,(NH hs+ (N —1) cot 2u), (21)
when %; and H, are bounded.
4. DISTURBANCES

First-order disturbances (see Meyer 19484) are finite* discontinuities of the first-order
derivatives (in the physical plane) of ¢ and 4, i.e. discontinuities of /£, or H,, or both, which,
according to the theory of characteristics (Courant & Hilbert 1937), persist along the
respective Mach lines. It is convenient to associate a disturbance with the family of Mach
lines along one of which it persists. Thus

Ahﬂ - hﬂ2_kﬂl

(suffixes 1, 2 refer to upstream and downstream values, respectively) denotes the strength of
a ‘minus’ disturbance, by lemma 1. By equation (13) and lemma 1,

0Ahg/da = N cot 2u Ahg.t (22)
From o, to a the strength of a minus disturbance therefore increases by a growth factor
F(ay, a) = exp [f“N cot 2u da’] , (23)

where f = const. during the integration, so that du = $(1—2N)da’ by (1), (2) and (6).

Similarly,
dAh,[df = — N cot 2u Ah,, (24)
which leads to a growth factor

Glfw ) = exp| ; Neot Qﬂdﬂ'] (25)

* Except at isolated points.
t In a simple wave where H, =0 we must have recourse to equation (20).
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along a plus Mach line, from f to £, where now du = —4(1—2N) df’. Qua functions of z both
growth factors are therefore identical; they are given by the quotient f{x)/f(#,), where

S() = {[(y—cos 2u)7 sin~ O+ L]V &~ Dsec upt (26)

(f(#) has a minimum for 4 = %m, i.e. M = /2; see figure 3).

If a disturbance of the nth order is defined as a finite discontinuity of d7~!4,/da""! or
0" thg/df~1, first order, linear, ordinary differential equations are also found as the focusing
equations for disturbances of any order, but, in contrast to (22) and (24), they are not homo-
geneous. A second-order disturbance A(dky/9p), for example, satisfies the equation

d \ohg Ohg . 2, 0 ]
o A—a? = Ncot2u AW~—[N cosecu i (Ncot2u) [ Ahg
(by (13) and (14)), and this integrates to
A%hﬁi,’ = CF(a, ) — Ah/,[N cot 2u —|—L: N2cosec?2u doc'] )
2:0
/ B
. %v. s
I'5 o
VAR
AN
>
1-0 / - o
0° 30° 60 90
yZ;
Ficure 3. The growth factor f(u)/f(n/4), for y="7/5. Ficure 4. Characteristic plane. S.L. sonic line

(p=*%m); V.L. vacuum line (z=0).

since du/df = —du/de, by equations (1) to (4); C is a constant of integration. The focusing
equation for a disturbance of order z (> 1) is distinguished from an equation of the form (22)
or (24) by a set of terms linear in the disturbances of order <z. A disturbance of any order
therefore implies disturbances of all higher orders. On the other hand, if no disturbances of
order <z are present on a Mach line, a disturbance of order # satisfies an equation of the
same form as a first-order disturbance, and has the same growth factor.

In the investigation of the supersonic flow of inviscid fluids, disturbances are encountered
in two ways: first, in connexion with simple waves and with boundary conditions that exclude
analytic solutions, and secondly, in connexion with virtual perturbations (‘wavelet’ argu-
ments) or discontinuous approximations to analytic solutions (finite difference methods).
In both cases it is useful to distinguish clearly between the properties of disturbances of
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160 R. E. MEYER ON THE FOCUSING EFFECTS IN

particular orders—which may be introduced as accidental byproducts of the neglect of
boundary layers, or of particular methods of mathematical treatment—and the properties
common to disturbances of all orders, which must be regarded as indicative of properties of
supersonic flows as such. The growth factor (26) belongs to the latter type; it describes the
steepening of any wave front* however weak the disturbance may be that marks it.

5. SINGULARITIES

The role of first-order disturbances in connexion with limit lines and branch lines differs
from that of disturbances of any higher order. We shall begin by deducing certain properties
of limit lines and branch lines under the assumption that 4,, &y, H, and Hj are continuous
(where they are bounded). In §§5-3 and 5-4 we shall discuss how those results are affected
when first-order disturbances are present.

The singularities of the transformation from the physical plane to the hodograph plane,
and vice versa, have been investigated in Craggs (1948). The co-ordinate net in the«, f-plane
(‘characteristic’ plane; figure 4) corresponds to the well-known epicycloid net in the hodo-
graph plane. Itis obvious that the transformation of the supersonic region of the hodograph
plane into the characteristic plane is 1-1 except at the sonic line and at the vacuum line.
Most properties of the transformation from the physical plane to the characteristic plane are
therefore analogous to those of the hodograph transformation, and can be obtained from
knowledge of the Jacobian of the latter transformation. In simple waves, however, lines are
encountered (cf. §5-4) that possess all the properties of limit lines except the one by which
limit lines are defined in Craggs (1948), viz. the property that the Jacobian of the trans-
formation vanishes. Even in these cases, where the Jacobian fails to provide any information
on the properties of the transformation, the length parameters introduced in §2 describe
them fully (§5-4). Moreover, limit lines as well as branch lines may be divided naturally into
two classes corresponding to the Mach-line families. We shall therefore define them directly
in terms of the length parameters.

5-1. We define a branch point of the first order as a point where one, and only one, of the
length parameters H,, H, vanishes. (Such a point is a branch point in the sense of Craggs
(1948), for the Jacobian of the transformation from the physical plane to the characteristic
plane is

J = HaHﬁ sin 24.) (27)

TureoreMm 1. Any branch point of the first order lies on a branch line,T which cannot end inside a
supersonic region.

Let H, = 0 ata point Pin the physical plane. Ifit were not true that H,, vanishes identically
on the plus Mach line through P there would be a point ¢ on this line such that

H,(Q)+0, (28)

* The term ‘wave front’ is used, in the first place, for the frontier of a region occupied by a simple wave,
and is then generalized to denote the frontier of a region in which the velocity components are analytic in the
space co-ordinates; in any case the term is used only when the frontier is not a shock wave (cf. Courant &
Hilbert 1937). By the ‘steepening’ of a wave front, an increase is meant in the magnitude of the lowest order
discontinuity that occurs; and the number, n, of this order may be regarded as a measure of the ‘weakness’ of
the disturbance. ’

1 The existence of branch lines was discovered by Lighthill (1947); the first part of the theorem is due to

Craggs (1948). .
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but } H,(P)=0. ' (29)
Now, equation (14) (as well as (18)) integrates to
N 2
h(P) = Glbo ) [+ [ Gy e ] (30)

where the integral is to be evaluated along the plus Mach line. (Use is made of (25).)
G(fy, B) is non-zero, and N cosec 2x is bounded, for 0 << 4n, and hence (28) and (29) are
incompatible if the Mach-line segment P@ is of finite length.

A line where H, = 0 is therefore a plus Mach line, and a line where Hy; = 0 is a minus
Mach line; we shall call the former a plus branch line and the latter a minus branch line.
Various properties of branch lines are discussed in Craggs (1948). An important property of
all branch lines encountered to date is that dH,/k,d« is bounded on all plus branch lines, and
0Hp/hydf on all minus branch lines; it follows that H, varies like (¢ —a,)* on any minus Mach
line near a plus branch line on which « = «, and dH,/A,da=0.

IfH, = 0H [h,0u = 0 we may speak of a double branch line (its properties are discussed in
Craggs (1948)), and if further derivatives vanish, of a multiple branch line. A simple wave is
a region covered by branch lines of one family.

A point where H, = H; = 0 may be termed a branch point of the second order; examples
are the sonic point of a straight streamline (Lighthill 1947) and the point where a branch line
meets a free streamline (by (9)),* e.g. a jet boundary A region of uniform flow is covered by
branch points of the second order.

The role of branch lines in Massau’s method of step-by-step integration of the equations of
motion is discussed in the appendix.

5-2. We define a limit point of the first order as a point where one, and only one, of the
length parameters 4,, i, vanishes. (Such a point is a limit point in the sense of Craggs (1948),
for the Jacobian of the transformation from the characteristic plane to the physical plane is

J' = hyhysingu = J-1.) (31)

THEOREM 2. Any limit point of the first order lies on a limit line,T which cannot end inside a supersonic
region except at a limit point of higher order.

This follows from (18) (or (20)) and the implicit function theorem. Note that the assump-
tion is implied that %, (or 4;) is continuous. No example is known of a higher order limit
point. ]

A limit line where %, = 0 (k; = 0) will be termed a plus (minus) limit line. On a plus limit
line the velocity gradient is perpendicular to the plus Mach lines, by (8), and we conclude
from Craggs (1948) that it envelops plus Mach lines. (This, and the other properties of
limit lines derived in Craggs (1948), can be proved also when the Jacobian does not exist

(cf. §5-4).)

* The author is indebted to Mr Lighthill for pointing out this example.

T 'The first part of the theorem is due to Craggs (1948). A cusp of a limit line is not interpreted in theorem 2
as a point where it ends.

I [Note added in progf.] Examples have been found in one-dimensional unsteady flow by Burgers (1948)
and P. M. Stocker (unpublished). In both cases the singularity is of one of the types discussed in Craggs
(1948); two singular lines intersect in the characteristic plane, both limit lines are cusped, and a sector of
the physical plane is covered four times.

Vol. 242. A. 22
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A pointwhere %, = dh,[da = 0, 3%h,/da?= 0, is a cusp of a plus limit line (cf. Craggs (1948)).
More generally, let the singular line %, = 0 in the characteristic plane be given by the
equation f = f,(@), and the limit line in the physical plane by the equations x = x,(a) and
y = y,(@). Then any point where the singular line touches a minus Mach line (so that
df,/de = 0) corresponds to a singular point of the limit line (dx,/dx = dy,/doe = 0 by (12));
when df,/dx changes sign this point is a cusp. When %, = 0 on a finite segment of a minus Mach
line in the characteristic plane, then the corresponding segment of the limit line is reduced to

a point (since its length is J h,dw), and at that point § and ¢ change discontinuously (by (1) and

(2)); the best-known example is the centre of a simple wave (corner of a Prandtl-Meyer
expansion).*

TueoreM 3. If a Mach line has two limit points of its family they must be separated on it 1 by an odd
number of points where the Mach line is cusped.

Progf. By lemma 1 and theorem 1, %, can change sign on a plus Mach line only where
h, = 0. Atany such point dk,/hzdf >0, by (18), if ;0. Hence, if we follow a plus Mach line
from a point where %, = 0, either exclusively in the positive direction, or exclusively in the
negative direction, we cannot arrive at another point where 4, = 0.

Near a cusp of a Mach line, however, the positive direction on it, as defined in § 2, points
either towards the cusp on both branches, or away from it on both branches. Ifit is a plus
‘Mach line with the positive direction pointing towards the cusp, say, and with £, >0 at the
cusp, then equation (18) does not exclude the occurrence of a zero of #, on each of the two
branches.

On the other hand, if a plus Mach line has just two cusps and if 4, has the same sign at both
of them, then %, can vanish only once on the Mach line (by (18)). The occurrence of two
points where /4, = 0 on the same plus Mach line therefore requires an odd number of cusps of
the Mach line between them. '

The cusp of a Mach line is a limit point of the other family, by (12). If a Mach line is not
cusped at a limit point of the other family, then the limit line is cusped (cf. above) (such a
point might be counted as an even number of limit points in the physical plane, in view of the
two-point contact, or even number point-contact, between the Mach line and the singular
line in the characteristic plane).

THEOREM 4. If a supersonic region is extended far enough, any Mach line that is not a branch line
must meet a limit line. . ,

For simple waves this is a well-known result (Shepherdson 1946, 1947; Courant &
Friedrichs 1948). That it is true in general follows from the fact that any Mach line that is
not cusped, and not a branch line, must have a limit point of its family if the Mach line
extends over a sufficient distance, by virtue of (30) and of the corresponding equation for
kg, since F(ag, @), G(fo,f), N, and sin2u are all positive. It may, of ceurse, be possible to
consider only a portion of the supersonic field (supposed bounded, at any rate in part,

* In that case A, is discontinuous, since a simple wave is flanked by regions of uniform flow; the centre is an
isolated limit point of the first order (cf. § 5-3). '

1 Provided no point of the Mach line is a limit point of higher order.

* The author is indebted to Mr Stocker for an important contribution to this result.
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by solid boundaries) in which limit lines do not occur; limit lines always occur, however,
in the part of the supersonic field that is the extension of the portion considered.

The theorems 1 to 4 provide useful criteria for the prediction of limit lines. For instance, if
we follow a plus Mach line in the negative direction to the boundary of the region of flow, and
if h,> 0 there, then (by (18)) the first limit point we can possibly meet on retracing this
Mach line back into the region of flow must be a zero of ;. In other cases it may be easier to
arguein a different way; we may be able to satisfy ourselves that a Mach line must have a limit
point of its family beyond the given boundary streamline, if the field of flow is extended in
that direction. If the boundary streamline is of bounded curvature it cannot meet the limit
line,* which is therefore confined to one side of the boundary streamline as long as the latter
does not meet a branch line (or a first order disturbance, cf. § 5-3) of the same family. A limit
line cannot meet a branch line of the same family, but may approach it asymptotically, and
may approach the two sides of a branch line on different sides of the boundary streamline.
Examples are easily constructed of simple waves that exhibit these properties (Shepherdson
1946, 1947).

5-3. We now proceed to investigate how the above theorems are modified if first-order
disturbances are present. By lemma 1, theorem 1 still holds on either side of any Mach line.
If H, is discontinuous at a point P in such a way that it tends to zero as P is approached in
some direction, then A, must vanish identically on that side of the plus Mach line through P
on which it vanishes at P, and it cannot vanish on the other side of this Mach line. Such a line
may be called a ‘half” branch line. It occurs frequently in connexion with simple waves; for
example, in the case of a jet (figure 5), with uniform flow upstream of the mouth, the Mach
line separating the regions S_,;, Gy, S_, from the regions U,, §,,, Us and U,, §.,, U,, respec-
tively, are plus half-branch lines. In a nozzle corrected to give a uniform flow (figure 6),
the regions S, S_ are simple waves; their upstream borders are half-branch lines if the
velocity gradient on the axis is discontinuous at the point 4 (by (9) and (10)); when
approached from the upstream side they present themselves as single branch lines if this
gradient is continuous, and multiple branch lines if the higher derivatives of the velocity
components, up to some order, are continuous as well. These distinctions are of importance
for the accurate design of wind-tunnel nozzles (cf. appendix).

A limit line must be cut off, or at least interrupted, by a first-order disturbance of its own
family. Foritis shown in § 4 that %, must be discontinuous at every point of a plus Mach line,
if it is discontinuous at one point. Theorems 3 and 4, however, remain valid on each side of
any Mach line. Examples of Mach lines, the two sides of which meet a limit line of the same
family at different points (so that the limit line is not a continuous curve), are found in
Shepherdson (1946, 1947) ; in such cases the limit line starting on the downstream side of the
Mach line may be interpreted as the continuation of the limit line ending on the upstream
side. '

There are also examples of a limit line starting at some point of a Mach line carrying a
disturbance, with no upstream branch of the same limit line present. In Pack (1948), for
instance, where two cases of jets of the type indicated in figure 5 have been treated by
numerical methods, limit lines are found starting on the border between the regions $, ; and

* By (10); the streamline through the cusp of a limit line has infinite curvature (see also Craggs 1948).
22-2
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164 R. E. MEYER ON THE FOCUSING EFFECTS IN

Gy, and S, , and G, respectively. These limit lines start on the borders of simple-wave regions,
but do not themselves form part of such regions. They are examples of limit lines starting at
a point of a half-branch line; in such cases %, is both zero and infinite at the same point, being
zero on one side of the plus Mach line through the point and infinite on the other side. Limit
lines that start in the middle of the flow do not occur only in connexion with simple-wave
regions; examples have been found in axially symmetrical flow (Meyer, 1948 a; Johannesen
& Meyer 1949).

Ficure 6

5-4. We have seen that the singularities of the transformation from the physical plane to
the characteristic plane resulting from the simultaneous occurrence of limit lines, branch
lines, and first-order disturbances, appear more complex than the singularities of the first
order treated in Craggs (1948); some of them cannot be discussed in terms of the Jacobian.
In order to show how the geometrical features of such singularities can be deduced from the
behaviour of the length parameters, let us consider the example of a simple wave, covered by
plus branch lines and containing a minus limit line starting at a point where /4, is discon-
tinuous.

Since H,, vanishes identically in the region, the minus Mach lines are straight (by (5) and
(7)), and they are at the same time the isobars and isoclines. The curvatures of the plus Mach
lines and the streamlines, respectively (MM’ and S, in figure 7), are infinite at the limit line
(4B), by (5) and (10). Both lines are cusped, for on the streamlines, for example,

hydo = hydf (32)

(since the streamlines bisect the angle between the positive directions on the respective Mach
lines), and hence, by (12),

dx[df = cos (0+p) hyde/df -+hgcos (0 —p) = hg[cos (0+p) +-cos (ﬁ—,u)],}

dy|df = hy[sin (0 -+pu) +sin (6—p)]. (33)
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TWO-DIMENSIONAL, SUPERSONIC FLOW 165

It follows that both dx/df and dy/df vanish at the limit line, and that at least one of them
changes sign (except where the limit line is itself cusped). It can be proved similarly that the
limit line is an envelope of the minus Mach lines. By (8), the velocity gradient is infinite and
perpendicular to the minus Mach lines. _

On one side (we shall call this side II) of the minus Mach line DAC the parameter 4,
vanishes at 4; for definiteness let 4,0 on D4, and £, <0 on AC. Since % is discontinuous
across DAC, hy=+0 on the other side (side I) at 4, and, by lemma 1, we may take C'and D
sufficiently close to 4 so that ;=0 between C and D on side I. Let us assume that /,>0 on

B " g
3 jut B
1
2
il / 1
D I A / I C
e 1
S M
S
Ficure 7 Ficure 8

side I of the Mach line DAC; it will appear immediately that £; must, in fact, in the case
shown in figure 7, have the same sign on side I as on side II of the segment DA4. It
follows from (5), (10) and (8) that the curvatures of the plus Mach lines and streamlines,
respectively, and the component in the plus Mach direction of the velocity gradient are dis-
continuous across the Mach-line segment D4 ; they are finite on both sides, and none of them
changes sign. ‘Across’* the segment AC they are all discontinuous; they are finite on both
sides, and change sign. On the streamlines, dx/df and dy/df also change sign ‘across’ AC, by
(33), but d is continuous; the streamlines show the same behaviour as at a limit line, except
that the curvature is finite. The same is true for the plus Mach lines. The Mach-line segment
AC is therefore an edge of regression of the transformation, but not a limit line in the strict
sense. The streamline (and, similarly, the plus Mach line) through 4 has finite curvature on
side I, and infinite curvature on the other side; it is not cusped.

The geometrical properties in the large of the transformation are the same as those of a
field of flow containing a limit line with a cusp (Craggs 1948). The Mach-line pattern

* In figure 7, the region between AB and AC is triply covered, so the sides I and II of AC coincide in the
figure as drawn on an unfolded sheet of paper.
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covers a part of the physical plane with three sheets. On sheet 1 /j is positive. It changes
sign discontinuously, from side I to side II of the edge of regression, and on sheet 2,
between the edge of regression and the limit line, £, < 0. From side II to side III of the limit
line %, changes sign continuously, passing through zero, and on sheet 3, 4, is again positive.
H,, vanishes throughout; the Jacobian (27) vanishes' everywhere except at the limit line,
where it is indeterminate. The ‘folding’ of the Mach-line pattern, and the appearance of
multiply-covered regions, is therefore connected primarily with the change of sign of a length
parameter £ rather than with that of the Jacobian of the hodograph transformation.

A (non-singular) characteristic plane can be constructed in which £ and the length s on the
minus Mach line DAC (in place of &), measured in the positive direction, are rectangular
Cartesian co-ordinates. Conditions in this plane are indicated in figure 8.

The occurrence, in the physical plane, of edges of regression that are not limit lines need
not be connected with a simple wave. When a limit line starts at a point where a length
parameter £ is discontinuous, then a part of a Mach line through that point must be an edge
of regression. For atsuch a point 2 must change sign on one side, and only on one side, of one
of the Mach lines. In such cases the streamline curvature need not change sign at the edge of
regression. The isobars are no longer coincident with Mach lines, as in a simple wave, and
their slope changes discontinuously, by (11), at every Mach line carrying a first-order
disturbance (the same is true for the isoclines). Conditions in the physical plane and in the
a, f-plane are similar to those indicated in figures 7 and 8.

Itis evident that a point of regression of a Mach line must be counted as a cusp in the sense
of theorem 3.

6. THE START OF AN OBLIQUE SHOCKWAVE

The conjecture has been put forward by Riemann (1860), and adopted generally since,
that the occurrence of a limit line leads to the formation of a shockwave. Tollmien (1947)
has attempted to prove that an oblique shockwave, if it starts in the middle of the flow with
zero initial strength, must start at the cusp of a limit line. His argument can be simplified and
extended to apply to singularities of the type described in § 5-4, as follows.

Let suffixes 1, 2 denote values immediately upstream and downstream of the shockwave,
respectively. Let (w+06,) be the angle of inclination of the shockwave, and ¢ = #,—0, the

‘angle through which the stream is deflected. For definiteness, assume that §>0; then
0 <w< %, the shockfront touches a minus Mach line where its strength vanishes, and for a
weak shockwave (Lighthill 1944)

Hy—py = Fsecuy(2sin’uy +y—1) 8+ 0(8?), (34)
w—py = N5+ 0(82). (35)

It is well known that the equations for the change in ¢ and § across a weak shockwave differ
from those for the change through a simple wave by terms of the order of 6°. Either (¢, —a,) or
(f,—f,) must therefore be of that order. It follows from (1), (6) and (34) that a,—a; = 0(4?)
at most. From (1) and (2), a4/ = 20, so the discontinuity in ¢+ /£ is 20. Hence

ay—ay = 0(8%), fr—f) =204+ 0(8). (36)
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Let7 denote the arclength on the shockwave, measured so that it increases in the direction
making the smaller angle with the stream direction. Then, at any point of the shockwave,
and on both sides of it,

dx|dr = cos (0+p) h,da/dr+-cos (6 —p) hydf|dr = cos (0+0,),
dy|dr = sin (0 +p) h, de/dr +sin (6 —p) hgdf/dr = sin (0 +0,),

by (12). Hence, on the upstream side,

hgy dB[dT = sin (p; — o) [sin 2u),  h,, do,[dT = sin (44 w)[sin 2, (37)
and on the downstream side,
hgodfo/dr = sin (py—w+-0) [sin 2uy, ko day/dT = sin (py+w—0) [sin 24,. (38)
If the shockwave starts with zero strength, § = 0, and hence
hydefdr =1, hgdfjdr =0, (39)

at the point where it starts, on both sides. It follows by (36) that either 4, = £,,, or
H,, = H,, = 0 at this point. If we assume that dd/dr does not vanish there, it follows also that
either kg, = 0, or kg = 0, or both. :

By differentiating the equations (37) and (38) with respect to 7, we may extend the argu-
ment in either of two ways. We may determine the initial value of dd/dr, for any one of the
possible types of singularity in terms of the values of the length parameters and of their
derivatives. We may also calculate the initial curvature of the shockwave,

d(w+0,)/dr = Ky + 3N, d(fo+-5y) [dr

(use is made of (5), (39), (6) and (35)), and the initial values of higher derivatives of both &
and (w+4,). In this way we may try to construct a shockwave solution for any given type of
singularity of the Mach-line pattern, as has been done in Tollmien (1947) for one case in-
volving a cusp of a limit line. Alternatively, we may study the case where § = dd/dr = 0,
d?/dr?+ 0, at the point where the shockwave starts, and thus seek to prove, eventually, that
any shockwave must start at a limit point if it starts with zero strength at a point in a super-
sonic region and if its strength is an analytic function of 7 near the point where it starts.

It should be noticed, however, that our argument is based on the fact that the shockwave
equations imply an infinite value of the component of the velocity gradient normal to one of
the Mach directions when § - 0. The shockwave equations, in turn, are based on the assump-
tion that the width of the shockwave is negligible compared with the macroscopic dimensions
of the problem; this is true for shockwaves of finite strength, but not for very weak ones
(Taylor 1910). No case is reported where the position of the shockwave has been determined,
for the same problem, both from experiment and from the theory of inviscid fluid motion and
the shockwave equations. ‘ -

7. THE REFLEXION OF FIRST-ORDER DISTURBANCES AT THE SONIC LINE

To complete our investigation of first-order disturbances, we discuss their reflexion at the
sonic line. The case arises in a nozzle with a sharp-edged throat, if the sonic velocity is reached
on the wall at a small distance upstream of the throat (figure 9). Another example is the flow
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through a sharp-edged slit from one container to another (figure 10), if the ratio of the
pressures in the respective containers is big enough to generate a supersonic jet, but too small
to deflect the boundary streamline, at the edge, through half its angle of inclination just
upstream of the edge.*

Ficure 9 Ficure 10

The most familiar types of reflexion at boundaries of supersonic regions are that at a free
streamline, e.g. a jet boundary, where f; = 0 and hence, by (9), AH, = AHy; and that at a
fixed streamline with continuous curvature, e.g. a body contour, where AH, = —AH;, by
(10).

TuEOREM 5. If the velocity gradient and the radius of curvature of the streamline are both bounded at
the sonic line, then the reflexion of a first-order disturbance at the sonic line is of the same basic type as that
at a free streamline. The slope of the sonic line 1s continuous. Interpreted as a discontinuity of h, the
disturbance reaches the same value at the points of intersection of any one isobar with the two Mach lines
through the point of reflexion.

Proof. By (8), (9) and (10),

H,—H, = O(cosp), H,=H,=0(1) (40)
at the sonic line.t If the disturbance is carried to the sonic line on, say, a plus Mach line,
" AH, = H,,—H, — —H,, H,, Ak, sin 24 — O(cost ), (41)

by (7), (25), (26) and (40) (suffixes 1, 2 refer to upstream and downstream values, respec-
tively) ; the disturbance does not lead to a discontinuity of A on the sonic line. By (40),

AH, — AH, = O(cos ) (42)
at most, and by (7), Ah,—Ahy = O(1). (43)

* This latter condition ensures that the downstream border of the centred expansion round the corner
meets the sonic line.
1 So the Jacobian (27), but not (31), vanishes at the sonic line.


http://rsta.royalsocietypublishing.org/

a
N A

A A

JA '\

/ y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TWO.DIMENSIONAL, SUPERSONIC FLOW 169

Itisshown in § 4 that the growth factors of Ak, and Ak, are the same function of ; so therefore
are F(ay, a) cost g and G(f,, ) cos® u. Hence, if Ak, and Ak, were not equal, for equal values of
p on their respective Mach lines, (43) could not be true. It follows from (11) and (7) that
tany is continuous on the sonic line.

The reflexion at the sonic line has certain features, however, which distinguish it from that
ata free streamline. The discontinuities of /; and of the isobar slope are O(sect #) on both Mach
lines through the point of reflexion; f; and tan s are continuous on the sonic line itself.

A Schlieren photograph showing the reflexion at the sonic line, as under theorem 5, is
found in Prandtl (1936).

The question arises how theorem 5 is affected if the assumption is abandoned that the
velocity gradient is bounded at the sonic line.* In particular, can a first-order disturbance
lead to a singularity of the velocity gradient there, so that the velocity gradient is bounded on
the upstream side, but not on the downstream side, of the Mach line that carries the disturb-
ance? It can be shown that if (40) holds on the upstream side of the Mach line, and if the
reflexion is not as under theorem 5, then the velocity gradient must be infinite at the sonic
line, on the downstream side, and the slope of the sonic line must change discontinuously so
that it becomes perpendicular to the local stream direction.

The author wishes to thank Professor Goldstein for many valuable criticisms.

APPENDIX NOTE ON THE NUMERICAL INTEGRATION OF THE CHARACTERISTIC EQUATIONS

When the equations (1) and (2) are integrated step by step (Temple 1946), the first of each
of the equations (1) and (2) is replaced by a difference equation, and the question arises, what
values, exactly, of tan (f —x) and tan (6+x) are best employed insuch equations. Holt (1949)
has shown that an error of the order of the step size, d, is made in every step if the values at
either of the end-points of each elementary Mach-line segment are substituted. He has also
pointed out that the error made in every step is of the order of §? if, instead, the arithmetic
mean is employed of the values at the two end-points of each elementary Mach-line segment.
If terms O(d?) are neglected, it is, of course, the same whether tan (§—u) is replaced by

0 = 3{tan (0, —p) +tan (0, — )} (44)
(suffixes 1, 2 and m denote values taken at the two end-points, and at the midpoint, re-
spectively, of a plus Mach-line segment of length ¢ in the characteristic plane), or by

tan [$(0; +0,—p — )],
or by tan (0,,—p,,),
as suggested in Temple (1946).
It will now be shown that a different procedure is required near a branch line, if the same

accuracy is to be achieved. Let point 1 be a minus branch point (Hj = 0); we assume that
9Hp[hy0f is bounded (§5-1). If dH,/h;f+0 at 1, we may put

Hy = o(f=F1)* [1+d(B—F51) + O{(F— )31t | (45)

* The assumption that the streamline curvature is non-zero excludes a branch point (cf. Craggs 1948).

T Such a series is appropriate for the branch line of Lighthill (1947). In general, the form of the expression
in the square bracket depends on the boundary conditions, and may be determined from them by the help of
(8), (9) and (10). It can be shown, however, that (46) holds (except for the error term, which in any case is
o(B;—p,)) near any single minus branch line, on which 9Hy/h,3p is bounded.
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near 1, on the plus Mach line 1, 2; ¢ and 4 are constants. By (12), (7) and (45),

B .
YY1 = ifﬂ sin (6 —u) hﬁdﬁ

— 2 200 g [1 380 feot (0,—) 22

csin 2y,
—d—2 cot 2 duf3B) + O fo— ) |,

where the derivatives are taken at the point 1, and similarly,

Boos 0t (g, — )t [ 1= 38— [ran (0, 5

+d+-2 cot 2 0B+ O{(Fo—B)%} |-

The mean slope of the Mach-line segment 12 is therefore

7, = YY1 _ ian (0,—p) [1 ++(fy— 1) {cot (8, —p,) +tan (0, _ﬂl)}ﬁ(ﬂa;,u) + 0{(/?2‘“:51)2}] ’

Xo— %)

which may be written

0, = }[2 tan (6, — ) + tan (0,— )]+ O{(f—£1)*)- (46)

Similarly, if point 1 is a double-minus branch point such that

Hy = c(f—py)¢ [1+d(F—p) + O{(F—F)%]

near 1, on the plus Mach line, we find that the mean slope of the Mach-line segment 12 is
7y = 4[3tan (0, —p) +tan (0, —py) 1+ O{(f,—£1)%}-

Analogous results are found for the minus Mach-line segments adjacent to a plus branch line.
These corrections may have a noticeable effect on the numerical results even when the

step size is small. For if the length of a plus Mach-line segment in the characteristic plane is

f,—pB, = 6, the length of the corresponding segment in the physical plane is J/(H,sin 24).
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